Ionic–Molecular Isomerism in Chlorophenylphosphoranes Ph_nPCI_{5-n} (1 $\leq n \leq 3$)

Mohammad A. H. A. Al-Juboori, Peter N. Gates* and Alan S. Muir

Department of Chemistry, Royal Holloway and Bedford New College, Egham Hill, Egham, Surrey TW20 0EX, UK

Both ionic and molecular modifications of the three chlorophenylphosphoranes Ph_nPCI_{5-n} ($1 \le n \le 3$) have been isolated for the first time as solids and all have been characterised by elemental analysis, Raman spectroscopy and ³¹P magic angle spinning (MAS) NMR spectroscopy.

Various types of isomerism are well-known for the halophosphoranes; these include ionic-molecular isomerism accompanying phase change $\{e.g.\ PF_3Cl_2\ which is pseudo trigonal bipyramidal (<math>\psi$ tbp) in the gas phase but $[PCl_4]^+[PF_6]^-$ in the solid and solid state ionic isomerism $(e.g.\ [PCl_4]^+[PCl_6]^-$ and $[PCl_4]_2^+[PCl_6]^-[Cl]^-$). Organochlorophosphoranes are usually either molecular ψ tbp, R_nPCl_{5-n} , or ionic, $[R_nPCl_{4-n}]^+[Cl]^-$, but very recently an example of a phase change isomerism was reported in which a molecular form

transformed into an ionic solid which for the first time contained both anionic and cationic phosphorus species;⁴ $\text{Cl}_4\text{P}(\text{CH}_2\text{Cl})(c)$ was formulated as $[\text{Cl}_3\text{P}(\text{CH}_2\text{Cl})]^+[\text{Cl}_5\text{P}(\text{CH}_2\text{Cl})]^-$ on the basis of ³¹P MAS NMR spectroscopy,⁴ analogous to the normal solid-state PCl_5 , viz. $[\text{PCl}_4]^+[\text{PCl}_6]^-$.² There has been some ambiguity about the nature of the chlorophenylphosphoranes $\text{Ph}_n\text{PCl}_{5-n}(1 \le n \le 3)$ in solution.⁵ This has arisen largely as a result of (i) possible trihalide anion formation, (ii) complexation with chlorocarbon solvents and

Table 1 Raman and ³¹P NMR data for solid Ph_nPCl_{5-n} $(1 \le n \le 3)$ species

	PhPCl ₄	Ph ₂ PCl ₃	Ph_3PCl_2	$[PhPCl_3]^+[Cl]^-$	[Ph ₂ PCl ₂]+[Cl]-	[Ph ₃ PCl] ⁺ [Cl] ⁻	Assignment
ν(PCl)/cm ⁻¹ a	268	276	274	538	567	593	$v_{\text{sym}}(ax)$
	350 304	335 297	c d				$ v_{\text{sym}} \\ v_{\text{sym}}(eq) \\ v_{\text{asym}}(ax) $
	525	e	c	619	607	e	v_{asym} $v_{asym}(eq)$
$\delta(^{31}\text{P})^b$	-34.7	f	-6.5	76.6	84.1	52.9	

^a Assignments partly based on comparison with isoelectronic Si species (ref. 10). ^b Spectra recorded at 121.49 MHz under MAS conditions, chemical shifts quoted relative to 85% H₃PO₄. Values consistent with any available data (ref. 6). ^c No equatorial P–Cl bond. ^d Raman inactive. ^e No antisymmetric stretch. ^f Unreliable measurement.

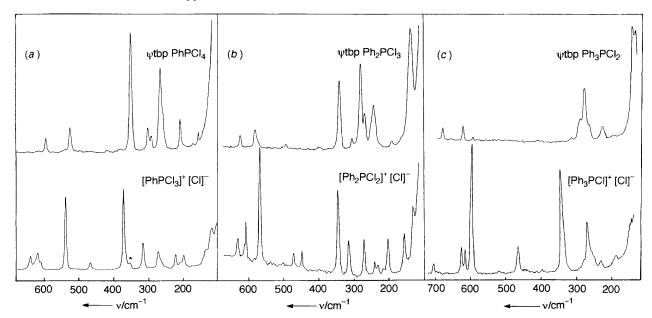


Fig. 1 Comparison of Raman spectra of (a) $[PhPCl_3]^+[Cl]^-$ and ψ tbp $PhPCl_4$ (* = residual ψ tbp $PhPCl_4$), (b) $[Ph_2PCl_2]^+[Cl]^-$ and ψ tbp Ph_2PCl_3 , (c) $[Ph_3PCl]^+[Cl]^-$ and ψ tbp Ph_3PCl_2

(iii) suggested equilibria between ψtbp and ionic species in certain solvents. However, in the solid-state, ³¹P NMR and ³⁵Cl nuclear quadrupole resonance (NQR) evidence permits both PhPCl₄ and Ph₂PCl₃ to be convincingly formulated as ψtbp species whereas Ph₃PCl₂ is ionic, [Ph₃PCl]⁺[Cl]^{-.6} Clearly there is a fine energetic balance between the two structural types and we have explored various synthetic methods with a view to isolating both ionic and molecular isomers of the chlorophenylphosphoranes in the solid-state.

Accordingly, we have attempted to isolate ionic isomers of PhPCl₄ and Ph₂PCl₃ and a wtbp isomer of Ph₃PCl₂. For the ionic syntheses we have recrystallised the easily prepared (chlorination in toluene) molecular forms of PhPCl₄ and Ph_2PCl_3 from anhydrous HCl (-90 °C) and permitted the HCl to evaporate slowly at -10 °C. The intention was to produce the ionic $[Ph_nPCl_{4-n}]^+[HCl_2]^-$ species; 7 subsequent decomposition at the higher temperature would yield the desired $[Ph_nPCl_{4-n}]^+[Cl]^-$ modifications if they possessed sufficient kinetic stability. In the case of PhPCl4, loss of all HCl was spontaneous at -10 °C and left a white solid which rapidly changed (ca. 1 h) to the \psi top form as monitored by chloride analysis and Raman spectroscopy. For Ph₂PCl₃, pumping of the recrystallised solid at -10 °C (10 h) yielded a product for which chloride analysis was consistent with that expected for Ph₂PCl₃ and the Raman spectrum of which clearly showed a set of bands corresponding to the [Ph₂PCl₂]+ cation, as observed for various Lewis acid derivatives. The ionic modification proved to be stable at ambient temperature over a period of months, but warming to ca. 180 °C induced some irreversible change to the \psi tbp form. The Raman spectra of these ionic modifications are compared with the appropriate ψ tbp forms in Fig. 1(a) and (b).

Passage of chlorine gas through a solution of Ph_3P in toluene yields the well-established ionic solid $[Ph_3PCl]^+[Cl]^-$; the presence of the cation was confirmed in the present work by comparison of the Raman spectrum with those for several Lewis acid salts. However, a milder chlorination (passage of Cl_2 gas over the surface of a solution of Ph_3P in toluene) yielded a white solid whose chloride analysis was in good agreement with that required for Ph_3PCl_2 and whose Raman spectrum is clearly different from that of the ionic species [Fig. 1(c)]. The spectrum is consistent with that for a D_{3h} tbp species and shows a good correspondence with that of the well-established Ph_3AsCl_2 .8

Assignments for the principal P–Cl stretching modes in both the ionic and molecular isomers of all three chlorophenylphosphoranes discussed are shown in Table 1, together with appropriate $\delta^{31}P$ values obtained by MAS NMR; these chemical shifts compare well with any previously available data⁶ and generally fall within the predicted 4 and 5 coordination ranges,⁹ thus confirming the Raman observations.

A more complete vibrational assignment of these compounds, aided by comparison with isoelectronic chlorophenyl-silanes, 10 will be reported elsewhere together with further details of preparations, complexation behaviour and thermochemistry.

Received, 13th May 1991; Com. 1/02243A

References

- 1 N. N. Greenwood, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 565 and references cited therein.
- 2 A. Finch, P. N. Gates, H. D. B. Jenkins and K. P. Thakur, J. Chem. Soc., Chem. Commun., 1980, 579.
- 3 D. E. C. Corbridge, *Phosphorus—An Outline of its Chemistry, Biochemistry and Technology*, Elsevier, Amsterdam, 1978.
- 4 K. B. Dillon and T. A. Straw, J. Chem. Soc., Chem. Commun., 1991, 234.
- R. Rabinowitz and R. Marcus, J. Am. Chem. Soc., 1962, 84, 1312;
 G. A. Wiley and W. R. Stine, Tetrahedron Lett., 1967, 24, 2321;
 D. B. Denney, D. Z. Denney and B. C. Chang, J. Am. Chem. Soc., 1968, 90, 6332;
 G. G. Arzoumanidis, J. Chem. Soc., Chem. Commun., 1969, 217;
 K. B. Dillon, R. N. Reeve and T. C. Waddington, J. Inorg. Nucl. Chem., 1976, 38, 1439.
- 6 K. B. Dillon, R. J. Lynch, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 1243; B. V. Timokhin, V. P. Feshin, V. I. Dmitriev, V. I. Glukhikh, G. V. Dolgushin and M. G. Voronkov, Dokl. Akad. Nauk SSSR, 1977, 236, 938; K. B. Dillon, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1978, 1318.
- 7 I. Tornieporth-Oetting and T. Klapotke, J. Organomet. Chem., 1989, 379, 251; R. Kohle, W. Kuchen and W. Peters, Z. Anorg. Allg. Chem., 1987, 551, 179.
- 8 D. M. Revitt and D. B. Sowerby, Spectrochim. Acta, Part A, 1970, 26, 1581.
- 9 J. M. Letcher and J. R. Van Wazer, *Topics in Phosphorus Chemistry*, eds. M. Grayson and E. J. Griffiths, Wiley, New York, 1967, vol. 5.
- 10 A. L. Smith, Spectrochim. Acta, Part A, 1967, 23, 1075.